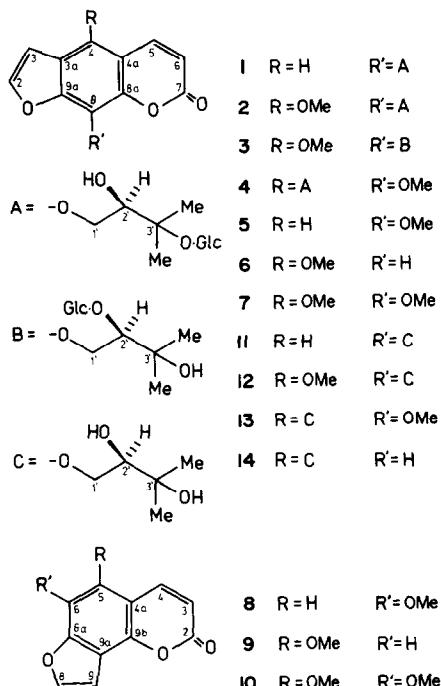


FUROCOUMARIN GLUCOSIDES OF *ANGELICA ARCHANGELICA* SUBSPECIES *LITORALIS*

OLE THASTRUP and JOHN LEMMICH*

Royal Danish School of Pharmacy, Department of Chemistry BC, Universitetsparken 2, DK-2100 Copenhagen, Denmark


(Received 16 November 1982)

Key Word Index—*Angelica archangelica* subsp. *litoralis*; Umbelliferae; psoralens; furocoumarins; furocoumarin glycosides; ^{13}C NMR.

Abstract—From the roots of *Angelica archangelica* subsp. *litoralis* three new furocoumarin glycosides, *tert*- O - β -D-glucopyranosyl-(*R*)-byakangelicin, *sec*- O - β -D-glucopyranosyl-(*R*)-byakangelicin and *tert*- O - β -D-glucopyranosyl-(*R*)-isobyakangelicin were isolated and their structures established mainly by spectroscopic methods. Additionally, *tert*- O - β -D-glucopyranosyl-(*R*)-heraclenol was obtained and characterized.

INTRODUCTION

Previously we have reported on the isolation and structure elucidation of dihydrofurocoumarin glycosides from *Angelica archangelica* subsp. *litoralis* [1]. Examination of a remaining fraction of yellow fluorescent glycosides from this plant and careful separations by reversed phase HPLC have now led to the isolation of *tert*- O - β -D-glucopyranosyl-(*R*)-heraclenol, (1) and three new furocoumarin glycosides (2-4) structurally related to 1.

RESULTS AND DISCUSSION

D-Glucose was the only sugar liberated by hydrolysis of the four glycosides, 1-4. Their strong yellow fluorescence, and signals observed in the aromatic region of their ^1H NMR spectra were typical of furocoumarins [2]. The shapes of their UV curves indicated 9-oxygenated and 4,9-dioxygenated psoralen skeletons [3], and this was confirmed by comparison of ^{13}C NMR data of the glycosides with those of suitable linear and angular furocoumarin model compounds (Table 1). Assigned ^{13}C NMR data of some of these models (5-7) have been reported previously [4]. Data of other models (8-10) were obtained during this study (see Experimental). Assignment of all signals in the ^1H NMR spectra (DMSO- d_6 solution) of 1-4 was possible by consideration of the multiplicities of hydroxyl signals, by acid decoupling of these signals and by supplementary double resonance experimentation (Table 2). In all cases the δ -values and especially the coupling patterns observed for sugar proton signals were found to be typical of β -D-glucopyranosides. For each of the four glycosides, the presence of an aromatic 2,3-dioxygenated isopentylxyloxy substituent also was indicated by characteristic AMX patterns in the region δ 3.8-4.7 together with pairs of *gem*-dimethyl singlets near δ 1.2.

The site of sugar attachment in these modified prenyloxy side chains was defined in consequence of the assignment of all hydroxyl resonances. Furthermore, the spectra of 2-4 indicated the presence of aromatic methoxy substituents.

The evidence presented above defined the constitutions of all glycosides as depicted, except for an uncertainty left in the case of glycosides 2-4 as to the relative placement of their C-4 and C-9 substituents. This remaining problem was solved by NOE experiments. Thus, in the case of 2 and 3 the clear NOE observed for H-3 (13 and 10%) and for H-5 (both 2%) upon irradiation of their methoxy signals at δ 4.16, is concordant only with placement of the methoxy groups at C-4 in these two compounds. Conversely, in glycoside 4, it is the modified prenyloxy group which is situated at C-4, because irradiation of the

*To whom correspondence should be addressed.

Table 1. ^{13}C NMR spectra (67.9 MHz in $\text{DMSO}-d_6$, 30°, TMS as int. standard)

	1	2	3	4	5	7
C-2	147.9	146.2	146.2	146.3	147.8	146.3
C-3	107.1	105.4	105.6	105.5	107.1	105.7
C-3 _a	125.9	114.5	114.4	115.8	126.0	114.4
C-4	113.8	144.1	144.1	143.8	113.9	144.3
C-4 _a	116.5	106.9	106.8	107.9	116.4	106.8
C-5	145.4	139.6	139.6	140.2	145.3	139.7
C-6	114.2	112.5	112.5	112.4	114.2	112.5
C-7	160.0	159.5	159.4	159.6	159.8	159.6
C-8 _a	142.7	143.2	142.9	142.8	142.5	143.1
C-9	131.6	126.8	126.4	127.5	131.9	127.2
C-9 _a	147.2	149.6	149.2	149.0	147.0	149.5
C-1'	76.7*	76.5*	76.6*	76.6	—	—
C-2'	76.8*	76.7*	82.7	76.6	—	—
C-3'	78.2	78.1	76.4*	77.9	—	—
Me	23.8	23.5	27.1	24.3	—	—
	21.6	21.5	25.2	20.9	—	—
MeO	—	60.8†	60.8†	61.2	61.0	61.3
						60.8
Glucose						
C-1"	96.8	96.6	101.8	96.8	—	—
C-2"	73.8	73.6	73.7	73.6	—	—
C-3"	75.2†	75.3‡	75.4	75.5	—	—
C-4"	70.3	70.2	70.2	70.2	—	—
C-5"	75.1†	75.0‡	75.4	74.9	—	—
C-6"	61.2	61.1†	61.2†	61.2	—	—

*, †, ‡ Assignments with similar signs may be interchanged.

signal, δ 4.68, arising from one of its C-1' protons effected NOE of H-3 (3%), and because no NOE was observed upon irradiation of the methoxy signal at δ 4.03. It may be noted, that the distinctly different δ -values, 4.16 and 4.03, observed for OMe-4 and OMe-9, respectively, in the spectra of **2-4**, (2% in $\text{DMSO}-d_6$), are observed also in isopimpinellin, **7**, (checked by NOE). Thus, a simple basis for differentiation between other 4-oxygenated 9-methoxypsoralens and 9-oxygenated 4-methoxypsoralens appears to be provided.

As all four glycosides provided dextrorotatory aglycones upon enzymic hydrolysis, the chirality, *R*, may tentatively be assigned to their hemiterpenoid side chains by optical comparison with (+)-(*R*)-oxypeucedanin hydrate, (**14**) [5]. Accordingly, **1** is the known compound *tert*-*O*- β -D-glucopyranosyl-(*R*)-heraclenol [6, 7], the spectral data of which are tabulated here for comparison, and because those reported earlier are very sparse. The glycosides **2** and **3** are the previously unknown *tert*-*O*- and *sec*-*O*- β -D-glucopyranosyl-(*R*)-byakangelicin, respectively. The glycoside **4** and its aglycone **13** are both new. In anticipation, however, of the natural occurrence of **13**, its racemic modification was earlier synthesized and named (\pm)-isobyakangelicin [8]. Thus, **4** is *tert*-*O*- β -D-glucopyranosyl-(*R*)-isobyakangelicin.

EXPERIMENTAL

D-Glucose was identified by TLC and by the D-glucose oxidase test.

Extraction and isolation. Extraction of dried roots (1350 g) of *A. archangelica* subsp. *litoralis* (Fr.) Thell. and gross fractionation.

Table 2. ^1H NMR spectra (270 MHz in $\text{DMSO}-d_6$, 30°, TMS as int. standard)

	1	2	3	4
H-2	8.14d (2.2)	8.08d (2.4)	8.08d (2.4)	8.06d (1.8)
H-3	7.10d (2.2)	7.36d (2.4)	7.36d (2.4)	7.31d (1.8)
H-4	7.67s	—	—	—
H-5	8.15d (9.4)	8.19d (9.8)	8.19d (9.8)	8.34d (9.8)
H-6	6.44d (9.4)	6.34d (9.8)	6.34d (9.8)	6.36d (9.8)
H-1'	4.60dd (10.3, 2.3)	4.43dd (10.4, 2.8)	4.67dd (10.5, 3.2)	4.68dd (9.8, 1.3)
H-1 ^a	4.40m	4.19dd (10.4, 7.6)	4.34dd (10.5, 6.0)	4.11dd (9.8, 8.6)
H-2 ^b	3.87dd (7.4, 2.3)	3.87dd (7.6, 2.8)	3.92dd (6.0, 3.2)	3.84dd (8.6, 1.3)
Me	1.22s	1.22s	1.24s	1.22s
	1.21s	1.19s	1.15s	1.19s
MeO	—	4.16s	4.16s	4.03s
OH-2'	5.22d (3.2)	4.90d (4.6)	—	5.19d (5.5)
OH-3'	—	—	4.35s	—
Glucose				
H-1"	4.40d (7.9)	4.41d (8.0)	4.70d (7.6)	4.40d (7.9)
H-2"	2.91t (8.5)	2.91t (8.0)	2.98t (7.8)	2.92t (8.1)
H-3"	3.16t (8.8)	3.17t (8.5)	3.18t (8.9)	3.17t (8.8)
H-4"	3.04t (8.8)	3.03t (8.7)	3.07t (8.3)	3.05t (8.4)
H-5"	3.12m	3.13m	3.16m	3.12m
H-6"	3.61dd (11.5, 1.8)	3.61dd (11.4, 1.9)	3.65dd (11.2, 1.6)	3.62dd (11.5, 1.7)
H-6 ^a	3.39dd (11.5, 5.8)	3.40dd (11.4, 5.6)	3.44dd (11.2, 5.1)	3.37dd (11.5, 5.7)
OH-2"	5.01 d (4.7)	5.13d (4.4)	4.54d (3.7)	5.08d (4.4)
OH-3"	4.93d (4.4)	4.86d (5.0)	4.83d (4.7)	4.87d (4.8)
OH-4"	4.88d (4.8)	4.83d (4.5)	4.82d (4.9)	4.83d (4.8)
OH-6"	4.40m	4.30t (5.4)	4.31t (5.5)	4.28t (4.8)

Except for hydroxyl signals, multiplicities are for acid decoupled spectra (1% CF_3COOD added). Figures in parentheses are coupling constants in Hz.

nations leading to a fraction, B (0.7 g), containing yellow fluorescent glycosides were described earlier [1]. Subsequent fractionation of B was by reversed phase HPLC on a Spherisorb ODS column (7 μ m, 0.8 i.d. \times 25 cm) with eluent A, (H₂O-MeOH-HOAc, 72:28:1), stepwise changed to eluent B, (H₂O-MeOH-HOAc, 60:40:1) for elution of late peaks. B (30 mg) dissolved in 100 μ l of eluent, could be separated for each injection. Appropriate pooled fractions upon rechromatography afforded 1 (35 mg), 2 (9 mg), 3 (14 mg) and 4 (21 mg), all except 4 crystalline upon removal of solvent. In eluent A, 1-4 exhibited capacity ratios, k' = 11, 19, 36 and 13, respectively.

tert.-O- β -D-Glucopyranosyl-(R)-heraclenol (1). $[\alpha]_D^{25} + 4^\circ$ (H₂O; c 0.1); [lit. [6]; $[\alpha]_D^{25} + 9^\circ$ (in H₂O)]; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 220 (4.40), 249 (4.37), 263 (sh) (4.14), 300 (4.07), no NaOMe shift; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 1690 (C=O), 1586 and 1470 (aromatic).

tert.-O- β -D-Glucopyranosyl-(R)-byakangelicin (2). Mp 170-173°; $[\alpha]_D^{25} - 8^\circ$ (H₂O; c 0.1); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 228 (4.34), 242 (4.19), 250 (4.19), 272 (4.30), 3.15 (4.11), no NaOMe shift; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3300-3400 (OH), 1710 (C=O), 1590 and 1480 (aromatic).

sec.-O- β -D-Glucopyranosyl-(R)-byakangelicin (3). Mp 111-114°; $[\alpha]_D^{25} - 15^\circ$ (MeOH; c 0.1); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 228 (4.34), 242 (4.21), 250 (4.21), 273 (4.29), 3.14 (4.11), no NaOMe shift; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3350 (OH), 1710 (C=O), 1585 and 1470 (aromatic).

tert.-O- β -D-Glucopyranosyl-(R)-isobyakangelicin (4). Non-crystalline; $[\alpha]_D^{25} + 29^\circ$ (MeOH; c 0.09); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 227 (4.31), 242 (4.18), 251 (4.15), 271 (4.28), 310 (4.05), no NaOMe shift; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3350 (OH), 1708 (C=O), 1582 and 1480 (aromatic).

Enzymic hydrolysis of 1-4. Performed by the procedure described earlier [1]. The resultant aglycones, 11-13 described below, were purified by CC on Si gel (CH₂Cl₂-EtOAc-tert.BuOH, 82:15:3).

(R)-Heraclenol (11). Mp 115.0-116.5°; $[\alpha]_D^{23} + 16^\circ$, $[\alpha]_{436}^{23} + 33^\circ$ (pyridine; c 0.2) [lit. [7] mp. 117-118°; $[\alpha]_D^{32} + 16.5^\circ$ (pyridine)]; ¹H NMR (90 MHz, δ in CDCl₃, TMS int. standard): 7.78 (1H, d, J = 9.7 Hz, H-5), 7.70 (1H, d, J = 2.2 Hz, H-2), 7.40 (1H, s, H-4), 6.84 (1H, d, J = 2.2 Hz, H-3), 6.38 (1H, d, J = 9.7 Hz, H-6), 4.77 (1H, dd, J = 10.1, 2.9 Hz, H-1'_a), 4.41 (1H, dd, J = 10.1, 7.7 Hz, H-1'_b), 3.86 (1H, dd, J = 7.7, 2.9 Hz, H-2'), 1.34 (3H, s, Me), 1.30 (3H, s, Me).

(R)-Byakangelicin (12). Mp 124.5-125.5°, $[\alpha]_D^{23} + 10^\circ$, $[\alpha]_{426}^{23} + 30^\circ$ (pyridine; c 0.05) [lit. [9] mp 117-118°; $[\alpha]_D^{25} + 24.62^\circ$ (pyridine)]; ¹H NMR (270 MHz, δ in CDCl₃, TMS int. standard): 8.13 (1H, d, J = 9.8 Hz, H-5), 7.64 (1H, d, J = 2.3 Hz, H-2), 7.02 (1H, d, J = 2.3 Hz, H-3), 6.30 (1H, d, J = 9.8 Hz, H-6), 4.60 (1H, dd, J = 10.2, 2.7 Hz, H-1'_b), 4.28 (1H, dd, J = 10.2, 7.8 Hz, H-1'_a), 4.19 (3H, s, OMe), 3.84 (1H, m, H-2'), 1.33 (3H, s, Me), 1.29 (3H, s, Me).

(R)-Isobyakangelicin (13). Mp 132.5-133.0°, $[\alpha]_D^{23} + 16^\circ$, $[\alpha]_{436}^{23} + 39^\circ$ (pyridine; c 0.1); ¹H NMR (270 MHz, δ in CDCl₃, TMS int. standard): 8.16 (1H, d, J = 9.8 Hz, H-5), 7.64 (1H, d, J = 2.4 Hz, H-2), 6.98 (1H, d, J = 2.4 Hz, H-3), 6.33 (1H, d, J = 9.8 Hz, H-6), 4.36 (1H, dd, J = 9.9, 3.1 Hz, H-1'_a), 4.34 (1H, dd, J = 9.9, 7.6 Hz, H-1'_b), 4.19 (3H, s, OMe), 3.89 (1H, m, H-2'), 1.35 (3H, s, Me), 1.30 (3H, s, Me).

¹³C NMR data of furocoumarin models, 8-10. These data, recorded below, were obtained from proton noise decoupled spectra. They were assigned by comparison with angelicin [10] and by consideration of line intensities as dependent on pulse delay time.

Spindolin (8). ¹³C NMR (67.9 MHz, δ in DMSO-*d*₆, 30°, TMS int. standard) 160.1 (C-2), 147.4 (C-8), 146.1 (C-6_a), 145.3 (C-4), 142.5 (C-6 or C-9_b), 142.3 (C-9_b or C-6), 117.7 (C-9_a), 114.1 (C-3), 113.8 (C-4_a), 104.8 (C-5), 104.2 (C-9), 56.4 (OMe).

Isobergapten (9). ¹³C NMR (67.9 MHz, δ in CDCl₃, TMS int. standard) 160.8 (C-2), 157.8 (C-6_a), 154.1 (C-5), 148.6 (C-9_b), 144.2 (C-8), 139.7 (C-4), 112.0 (C-3), 109.9 (C-9_a), 105.7 (C-4_a), 103.8 (C-9), 90.4 (C-6), 56.2 (OMe).

Pimpinellin (10). ¹³C NMR (67.9 MHz, δ in DMSO-*d*₆, 30°, TMS int. standard) 159.5 (C-2), 149.1 (C-6_a), 146.9 (C-8), 144.2 (C-9_b), 142.6 (C-5), 140.0 (C-4), 134.6 (C-6), 113.7 (C-3), 113.4 (C-9_a), 109.0 (C-4_a), 103.8 (C-9), 62.3 (OMe), 61.0 (OMe).

Acknowledgements—We are grateful to Drs. K. Schaumburg and H. Eggert (University of Copenhagen) for FT-NMR measurements. Thanks are due also to the Danish Natural Science Research Council for the provision of FT-NMR facilities.

REFERENCES

1. Lemmich, J., Havelund, S. and Thastrup, O. (1983) *Phytochemistry* **22**, 553.
2. Steck, W. and Mazurek, M. (1972) *Lloydia* **35**, 418.
3. Lee, K.-H. and Soine, T. O. (1969) *J. Pharm. Sci.* **58**, 681.
4. Elgamal, M. H. A., Elewa, N. H., Elkhrisy, E. A. M. and Duddeck, H. (1979) *Phytochemistry* **18**, 139.
5. Nielsen, B. E. and Lemmich, J. (1969) *Acta Chem. Scand.* **23**, 962.
6. Bandopadhyay, M. and Seshadri, T. R. (1970) *Indian J. Chem.* **8**, 1146.
7. Sharma, Y. N., Sharma, R. C., Zaman, A. and Kidwai, A. R. (1964) *Naturwissenschaften* **51**, 537.
8. Abu-Mustafa, E. A., El-Bay, F. K. A., El-Khrisy, E. A. M. and Fayez, M. B. E. (1973) *J. Heterocycl. Chem.* **10**, 443.
9. Noguti, T. and Kawanami, M. (1938) *Ber.* **71**, 344.
10. Bose, A. K., Fujiwara, H., Kamat, V. S., Trivedi, G. K. and Bhattacharyya, S. C. (1979) *Tetrahedron* **35**, 13.